The Bulldozer Aftermath: Delving Even Deeper
by Johan De Gelas on May 30, 2012 1:15 AM ESTSAP S&D profiled
The SAP S&D 2-Tier benchmark has always been one of my favorites. This is probably the most real world benchmark of all server benchmarks done by the vendors. It is a full blown application living on top of a heavy relational database. And don't forget that SAP is one of the most successful software companies out there, the undisputed market leader of Enterprise Resource Planning.
Profiling this benchmark is beyond the capabilities of our lab but Intel shared some of their profiling data when they compared the Xeon E5 with the Xeon 5600. This gives us very interesting insights in how the SAP application behaves.
SAP S&D | SPEC Int 2006 | |
Typical IPC (on Intel Westmere) | 0.5 | 1.1 |
Typical IPC (on Intel Sandy Bridge) | 0.55 | 1.29 |
Branches | 18% | 19% |
Mispredictions | 0.9% | 1.1% |
Loads (percentage of instruction mix) | 32% | 28% |
Stores (percentage of instruction mix) | 16% | 11% |
Besides the high level profiling numbers, quite a few details surfaced. For example, increasing the ROB (ReOrder Buffer) from 128 (Westmere) to 168 (Sandy Bridge) reduced the ROB stalls from 10% to almost nothing. Increasing the load buffers from 48 to 64 reduced the load buffers stalls to one fifth of what they were before! This clearly shows that SAP puts quite a bit of pressure on both the ROB and the load units. The application finds ample integer processing power in most modern processors, but it is limited by how fast data can be loaded and how well the Out of Order engine (of which the ROB is the primary buffer) is able to hide the load latency.
Further data confirms this. It is was my understanding that the hardware prefetchers of Sandy Bridge were improved a bit compared to Westmere/Nehalem, but in fact the smarter prefetchers are able to reduce the L2 cache misses by no less than 40%! Now, consider that in most SPEC CPU int 2006 benchmarks only 1 to 10 instructions out of 1000 typically miss the L2 cache. In contrast, in SAP, about 40 out of 1000 instructions miss the small 256KB L2 cache of the Westmere Xeon 5600, which is in the same range as the most memory intensive application in the SPEC CPU2006 int CPU suite (mcf).
SAP is thus an application that misses the L2 cache much more than most applications out there, with the exception of some exotic HPC apps. The better prefetchers inside Sandy Bridge make much better use of the extra bandwidth available and reduce the L2 and L1 misses. Hence, these improved prefetchers are probably one of the main reasons why Sandy Bridge performs better.
Interestingly, the L1 instruction cache misses were halved, and most of the L2 cache miss reduction came from instruction prefetching (less than half the cache misses). Data requests could not be prefetched.
So the end conclusion about SAP is:
- The application has very low instruction level parallelism (ILP) and as a result is not taxing the integer units much.
- The application has a relatively large but "prefetcheable" instruction footprint, which allows the prefetchers to reduce the instruction related cache misses
- The application has a massive and random data footprint, putting great pressure on the load subsystem. As a result the out of order engine has to hide the latency the best it can, and large ROB and load buffers help a lot. The latency of the memory subsystem matters.
Combine this with the fact that the SAP application has a high amount of TLP (Thread Level Parallism) and you'll understand that this is an application ideally suited for Hyper-Threading and Clustered Multi-Threading. Hyper-Threading for example is good for a 30% performance boost. The SAP S&D benchmark is a prime example on how a CPU architecture can be more server or more consumer oriented. The charactheristics of server applications are vastly different from the software that we run on our laptops and desktops.
SAP will hardly be limited by the lower integer execution resources of the individual Bulldozer integer cores. Bulldozer has vastly improved prefetching capabilities and larger OOO buffers. Add to this the 33% higher core count, and we should expect Bulldozer to outperform Magny-Cours chips by at least 33%, as the SAP benchmark emphasizes the strong points of the individual Bulldozer core without stressing the weak points (lower integer throughput). However, we are nowhere near 33% better performance, let alone the 50% higher throughput once promised by AMD. Why?
We have uncovered some additional understanding with the above information, but our job is not done yet.
84 Comments
View All Comments
thunderising - Wednesday, May 30, 2012 - link
Glad AMD has "Greater Performance" planned sometime in the future. Wow!themossie - Wednesday, May 30, 2012 - link
"There are also other factors at play, though, as it's already known that StarCraft II doesn't use more than two cores; theinstead, it's likely the..."(feel free to remove comment after fixing this)
Nightraptor - Wednesday, May 30, 2012 - link
I am wondering if it would be possible to compare the processor performance of the Trinity A10 with a underclocked FX-4100 set to the same frequencies (I don't know if it is possible to disable the L3 cache on the FX-4100). This might give us a rough idea of how much the improvements of Piledriver have bought us. Just doing rough math in my head it would seem that they have to be pretty significant given how a FX-4100 compared to the Phenom II X4's (it lost alot, if not most of the time t of the time). The new A10 Trinity's on the other hand seem to win most of the time compared to the old architecture. Given that the A10 is a Piledriver based FX-4XXX series equivalent minus the L3 cache it would seem that Piledriver brought very significant enhancements. Either that or the Phenom II era processors responded much more poorly to the lack of L3 than Piledriver does.coder543 - Wednesday, May 30, 2012 - link
I was hoping they would be doing the same thing, even though it would be challenging to draw real information out of comparing a desktop processor and a mobile processor.SleepyFE - Wednesday, May 30, 2012 - link
+1kyuu - Wednesday, May 30, 2012 - link
+2If you can figure out some way to do a comparison and analysis of Piledriver's performance vs. Bulldozer, I think a great many of us are interested to see that. From benchmarks, it seems like Piledriver improved a great deal over Bulldozer, but it's difficult to tell without being able to compare two similar processors.
Aone - Wednesday, May 30, 2012 - link
You can compare A10-4600M or A8-4500M versus mobile Llano or Phenom or even Turion to see tweaked BD is nothing of spectacular. For instance, in most cases A8-4500M (2.3GHz base) loses to Llano A8-3500M (1.5GHz base).Nightraptor - Wednesday, May 30, 2012 - link
Where are you getting the benchmarks from that a Trinity loses to Llano. In almost all the benchmarks I have been able to find (with the exception of a few) it seems that Trinity beats Llano, hence the original post. If the Piledriver enhancements were very minor I would've expected Trinity (a hacked quad core) to lose to Llano most of the time (a true quad core). This didn't appear to happen - at least not in the anandtech review.Aone - Wednesday, May 30, 2012 - link
"http://www.notebookcheck.net/AMD-A-Series-A8-4500M...Look at "Show comparison chart". Great info!
Nightraptor - Thursday, May 31, 2012 - link
I'm not a big fan of the reliability of that website - They tend to be pretty scant on the test circumstances and configurations. Furthermore I'm curious where they are getting the informaiton for the A8-4500 as to the best of my knowledge the only Trinity in the wild at the moment is the A10 which AMD sent out in a custom made review laptop. All they list is a "K75D Sample".