Low Power Server CPUs: the energy saving choice?
by Johan De Gelas on July 15, 2010 4:54 AM EST- Posted in
- IT Computing
Hardware Configuration
We have reviewed the Intel Xeon X5670 before: it is the best performing Intel Six-core in the 95W TDP power envelope. For comparison, we add the Intel Xeon L5640. The 32 nm “Westmere”L5640 reduces TDP to 60W, although it still has 6 cores. This chip runs at 2.26 GHz, but at lighter load it should boost itself to 2.8 GHz.
Test server
Asus RS700-E6/RS4 1U Server
Asus Z8PS-D12-1U Motherboard
Six-core Xeon L5640 2.26 GHz or Six-core Xeon X5670 2.93 GHz
6x Samsung M393B5170DZ1 - CH9 1333MHz CL9 ECC (24GB)
2x Western Digital WD1000FYPS 1TB (VM images and OS installation)
2 x Intel X25-E SLC SSD 32GB (Data Oracle OLTP & Log Oracle OLTP)
BIOS
Most Important BIOS Settings: (BIOS version 0701 (20/01/2010))
C1E Support: Enabled
Hardware Prefetcher: Enable
Adjacent Cache Line Prefetch: Enabled
Intel VT: Enabled
Active Intel SpeedStep Tech: Enabled
Intel TurboMode: Enable
Intel C-State Tech:Enabled
C3 State: ACPI C3
Software configuration:
Windows 2008 R2 Enterprise, Hyper-V enabled
vApus Mark I softwareas described here.
Current measurements
We used the racktivity PM0816-ZB datacenter PDU to measure power.
Using a PDU for accurate power measurements might same pretty insane, but this is not your average PDU. Measurement circuits of most PDUs assume that the incoming AC is a perfect sine wave, but it never is. The Rackitivity PDU measures however true RMS current and voltage at a very high sample rate: up to 20.000 measurements per seconds for the complete PDU. We read out the current and voltage out each second, which already gives us more than 4000 data points along our 70 minutes long virtualization power test. As the PDU has 8 ports, this allows us to test several servers at once, which will be very handy for future reviews.
Where is AMD’s Opteron?
We did not manage to get a decent server based on the latest AMD’s Opterons in the lab. The current “Magny-Cours” Servers in our lab are reference motherboards running in a desktop tower. So to avoid any unfair comparison with our Xeon rack servers we delay our measurements on the AMD platform until we find a way to get a real server in the lab.
49 Comments
View All Comments
Zstream - Thursday, July 15, 2010 - link
It kills the AMD low power motto :(duploxxx - Thursday, July 15, 2010 - link
lol, all that you can say about this article is something about AMD. Looks like you need an update on server knowledge, Since the Arrival of Nehalem Intel has the best offer when you need the highest performance parts and when using Low power parts which give still the best performance. Since MC arrived things got a bit different mostly due to aggressive price for all mid value but still a favor to intel parts for highend and L power bins. Certainly in the area of virtualization AMD does very wellWhat is shown here should be known to many people that design virtual environments, Virtualization and low power parts don't match if you run applications that need cpu power and response all the time, L series can only be very useful for a huge bunch of "sleeping" vm's.
Interesting would be to compare with AMD, but 9/10 both low power and high power intel parts will be more interesting when you will only run 1 tile, the huge core amount lower ipc advantage will loose against the higher ipc/core of intel in this battle.
Zstream - Thursday, July 15, 2010 - link
Excuse me? I am quite aware of low power consuming chips. The point AMD has made in the past four to five years is that low power and high performance can match Intel's performance and still save you money. I have been to a number of AMD web conferences and siminars were they state the above.MrSpadge - Thursday, July 15, 2010 - link
Not sure if you're being sarcastic here, as it's obvious AMD would tell you this.
But regarding the actual question: you'd be about right if you compared K8 or Phenom I based Opterons with Core 2 based ones. And you'd be very right if you compared them to Phenom II. However, the performance of these Intels is being held back by the FSB and FB-DIMMs and power efficiency is almost crippled by the FB-DIMMs. But Nehalem changed all of that.
MrS
duploxxx - Friday, July 16, 2010 - link
4-5 years.... Nehalem was launched q12009 since then all changed. Before that Xeon parts suffered from FBDimm powerconsumption and FSB bottleneck and that is why AMD was still king on power/performance and was able to keep up with max performance. Nehalem was king, Istanbul was able to close the gap a bit but missed raw ghz and had higher power needs due to ddr2, again MC parts leveraged back this intel advantage and now there is a choice again, but L power still is king to Neh/Gulf.Penti - Saturday, July 17, 2010 - link
It invalidates low power versions of AMDs also. That's he's point I would believe.stimudent - Thursday, July 15, 2010 - link
Not really.If there can't be two sides to the story or a more diverse perspective, then it should not have been published. Next time, wait a little longer for parts to arrive - try harder next time.
MrSpadge - Friday, July 16, 2010 - link
A comparison to AMD would have been nice, but this article is not Intel vs. AMD!It already has 2 side: high power vs. low power Intels. And Johan found something very important and worthy of reporting. No need to blur the point by including other chips.
MrS
Zstream - Thursday, July 15, 2010 - link
I know we have the VMware results but could someone do an analysis on AMD / INTEL chips?For instance I can get a 12 core AMD chip or a 6 core/12 HT chip from Intel. Has anyone done any test with Terminal Servers or Real world usage of a VM (XP Desktop) with core count?
I would think that a physical 12C vs 6C impacts real world performance by a considerable large amount.
tech6 - Thursday, July 15, 2010 - link
Great work Anandtech - it's about time someone took the low power TCO claims to task.