AnandTech Storage Bench - The Destroyer

The Destroyer is an extremely long test replicating the access patterns of very IO-intensive desktop usage. A detailed breakdown can be found in this article. Like real-world usage, the drives do get the occasional break that allows for some background garbage collection and flushing caches, but those idle times are limited to 25ms so that it doesn't take all week to run the test. These AnandTech Storage Bench (ATSB) tests do not involve running the actual applications that generated the workloads, so the scores are relatively insensitive to changes in CPU performance and RAM from our new testbed, but the jump to a newer version of Windows and the newer storage drivers can have an impact.

We quantify performance on this test by reporting the drive's average data throughput, the average latency of the I/O operations, and the total energy used by the drive over the course of the test.

ATSB - The Destroyer (Data Rate)

The Silicon Motion SM2262EN offers no improvement over the base SM2262 on The Destroyer, with an average data rate that is slightly below the HP EX920. These SMI controllers are providing performance that is well below the current standard for high-end NVMe drives.

ATSB - The Destroyer (Average Latency)ATSB - The Destroyer (99th Percentile Latency)

The average latency of the SM2262EN is only slightly worse than the HP EX920, but the 99th percentile latency has regressed more significantly into low-end NVMe territory.

ATSB - The Destroyer (Average Read Latency)ATSB - The Destroyer (Average Write Latency)

The average latency regression is due to degraded read latency, while average write latency has actually improved, though not to the point of being competitive with other high-end NVMe SSDs.

ATSB - The Destroyer (99th Percentile Read Latency)ATSB - The Destroyer (99th Percentile Write Latency)

The 99th percentile read and write latencies are both worse for the SM2262EN than for the HP EX920, but the write latency is clearly the bigger problem with a larger overall value and a more significant regression.

ATSB - The Destroyer (Power)

The energy usage of the SM2262EN during The Destroyer is a bit higher than for the HP EX920, which already used rather a lot of energy for not delivering high-end performance. The SM2262EN doesn't quite surpass the smallest, slowest SM2262 drive.

Introduction AnandTech Storage Bench - Heavy
Comments Locked

28 Comments

View All Comments

  • DigitalFreak - Wednesday, August 1, 2018 - link

    One thing has always confused me about these benchmarks. Does performance get progressively worse as the drive fills up? For example, the ATSB - Light average latency for the drive is 48 mu empty and 330 mu full. Does that mean when the drive is 50% full the latency would be around 189 mu? Or does it run at 48 mu until the drive hits 100% full? Same for the average data rate.
  • Billy Tallis - Wednesday, August 1, 2018 - link

    I think there's usually a threshold at which performance drops pretty rapidly because the SLC cache or spare area is no longer large enough. Unfortunately, determining the shape of the curve and where the threshold is (if there is one) is extremely time-consuming, and the tools used for the ATSB tests don't make it easy to test multiple drives in parallel.

    I did run the Heavy and Light tests on this drive with it 80% full and the results were similar to the 100% full case. But manual overprovisioning like that doesn't necessarily have the same impact that re-tuning the firmware would. A typical variable-size SLC cache won't be significantly larger for an 80% full drive than for a 100% full drive.

    And there's still the problem that the ATSB tests don't give the drive any long idle periods to flush the SLC cache. The SLC cache on a full drive might be large enough to handle the Heavy test reasonably well if it gets a realistic amount of idle time to flush the cache mid-test. But that would take the Heavy test from 1.5 hours to a full day.
  • DigitalFreak - Wednesday, August 1, 2018 - link

    Understandable. With the huge performance difference between empty and full with this controller, I was just curious at what percentage used the drive performance tanked. Based on your test we already know that 80% full is just as bad as 100%. Hopefully it's not any lower than that.
  • justaviking - Wednesday, August 1, 2018 - link

    I had the exact same question. How full is full?

    If the performance hit did not occur until 95% full or more, then it would be easily avoidable and acceptable (to me). If it happens at 30% full, it's a deal breaker. Or a linear degredation would also unacceptable to me since the degredation is so extreme.

    I STRONGLY ENCOURAGE taking the time to explore the "degradation curve" relative to "fullness" for this drive, since it is so dramatic. It could make a special article of the type AnandTech excels at.
  • 29a - Wednesday, August 1, 2018 - link

    I agree.
  • jtd871 - Wednesday, August 1, 2018 - link

    How long of a "long idle time" do you need? Are you talking about 1.5h run time for ATSB to 8h or 24h with sufficiently long "long idle times"?
  • Billy Tallis - Wednesday, August 1, 2018 - link

    Currently, the ATSB tests cut all idle times down to a maximum of 25ms. I suspect that idle times on the order of seconds would be sufficient, but I don't think we even still have the original traces with the full idle times. In the near future I'll do some SYSmark runs with a mostly-full drive; that's a similar intensity of storage workload to the ATSB light, but with a fairly realistic pacing including idle.

    I'll also try to compare the power data against the performance test duration for the synthetic tests. That should reveal how long the drive took to return to idle after the writing stopped, and give us a pretty good idea of how quickly the drive can empty the SLC cache and how high of a duty cycle it can sustain for writes at full speed.
  • Dark_wizzie - Wednesday, August 1, 2018 - link

    A larger drive helps mitigate the issues because 1) Larger drives tend to have large SLC cache? Or 2) There is more normal free space for the drive?
  • Billy Tallis - Wednesday, August 1, 2018 - link

    Both, in a big way when it's 2TB, and especially when you have a variable-size SLC cache. A mostly-empty 2TB drive can have over 100GB of SLC cache, which is absolutely impossible to fill up with any real-world client workload.
  • mattrparks - Wednesday, August 1, 2018 - link

    I wonder if...I think you could get similar results (stellar performance characteristics at low drive usage) by using a larger DRAM read/write cache when the drive mapping table is not taking up as much RAM. With 2GB of DDR4, let's say arbitrarily that 1.5GB of that is used by FTL page mapping tables when the drive is full. What if you found a way in firmware to manage your memory such that when most of the drive FTL is unmapped, that you could use say only 0.5GB for the mapping table and have an extra 1GB available for caching? Many of the synthetic tests could be gamed by keeping that much drive cache. I don't remember your drive testing methodology fully, but perhaps a full power cycle of the drive after the data is written, before the read tests, would make sure that all the performance is indeed SLC speed and not just enormous amounts of caching.

Log in

Don't have an account? Sign up now